237 research outputs found

    Dark matter annihilation and the Galactic Centre Excess

    Get PDF
    We compare the surface brightness profile and morphology of the Galactic Centre Excess (GCE) identified in wide-angle γ-ray maps from the Fermi-Large Area Telescope (LAT) to dark matter annihilation predictions derived from high-resolution Λ cold dark matter magnetohydrodynamic simulations of galaxy formation. These simulations produce isolated, disc-dominated galaxies with structure, stellar populations, gas content, and stellar and halo masses comparable to those of the Milky Way. For a specific choice of annihilation cross-section, they agree well with the Fermi-LAT data over the full observed angular range, 1°-15°, whereas their dark-matter-only counterparts, lacking any compression of the inner halo by the gravitational effects of the baryons, fail to predict emission as centrally concentrated as observed. These results provide additional support to the hypothesis that the GCE is produced by annihilating dark matter. If, however, it is produced by a different mechanism, they imply a strong upper limit on annihilation rates, which can be translated into upper limits on the expected γ-ray flux not only from the inner Galaxy, but also from any substructure, with or without stars, in the Galactic halo

    Baryonic effects on the detectability of annihilation radiation from dark matter subhaloes around the Milky Way

    Get PDF
    We use six, high-resolution Λ-cold dark matter (ΛCDM) simulations of galaxy formation to study how emission from dark matter annihilation is affected by baryonic processes. These simulations produce isolated, disc-dominated galaxies with structure, stellar populations, and stellar and halo masses comparable to those of the Milky Way. They resolve dark matter structures with mass above ∼106 M⊙ and are each available in both full-physics and dark-matter-only versions. In the full-physics case, formation of the stellar galaxy enhances annihilation radiation from the dominant smooth component of the galactic halo by a factor of 3, and its central concentration increases substantially. In contrast, subhalo fluxes are reduced by almost an order of magnitude, partly because of changes in internal structure, partly because of increased tidal effects; they drop relative to the flux from the smooth halo by 1.5 orders of magnitude. The expected flux from the brightest Milky Way subhalo is four orders of magnitude below that from the smooth halo, making it very unlikely that any subhalo will be detected before robust detection of the inner Galaxy. We use recent simulations of halo structure across the full ΛCDM mass range to extrapolate to the smallest (Earth-mass) subhaloes, concluding, in contrast to earlier work, that the total annihilation flux from Milky Way subhaloes will be less than that from the smooth halo, as viewed both from the Sun and by a distant observer. Fermi-Large Area Telescope may marginally resolve annihilation radiation from the very brightest subhaloes, which, typically, will contain stars

    How Filaments are Woven into the Cosmic Web

    Get PDF
    Observations indicate galaxies are distributed in a filament-dominated web-like structure. Numerical experiments at high and low redshift of viable structure formation theories also show filament-dominance. We present a simple quantitative explanation of why this is so, showing that the final-state web is actually present in embryonic form in the overdensity pattern of the initial fluctuations, with nonlinear dynamics just sharpening the image. The web is largely defined by the position and primordial tidal fields of rare events in the medium, with the strongest filaments between nearby clusters whose tidal tensors are nearly aligned. Applications of the cosmic web theory to observations include probing cluster-cluster bridges by weak gravitational lensing, X-rays, and the Sunyaev-Zeldovich effect and probing high redshift galaxy-galaxy bridges by low column density Lyman alpha absorption lines.Comment: 9 pages, gzipped uuencoded postscript file, 4 figures in separate files. The text + figures are also available from anonymous ftp site: ftp://ftp.cita.utoronto.ca/ftp/cita/bond/bkp_natur

    A High Deuterium Abundance at z=0.7

    Get PDF
    Of the light elements, the primordial abundance of deuterium, (D/H)_p, provides the most sensitive diagnostic for the cosmological mass density parameter Omega_B. Recent high redshift (D/H) measurements are highly discrepant, although this may reflect observational uncertainties. The larger (D/H) values, which imply a low Omega_B and require the Universe to be dominated by non-baryonic matter (dynamical studies indicate a higher total density parameter), cause problems for galactic chemical evolution models since they have difficulty in reproducing the large decline down to the lower present-day (D/H). Conversely, low (D/H) values imply an Omega_B greater than derived from ^7Li and ^4He abundance measurements, and may require a deuterium abundance evolution that is too low to easily explain. Here we report the first measurement at intermediate redshift, where the observational difficulties are smaller, of a gas cloud with ideal characteristics for this experiment. Our analysis of the z = 0.7010 absorber toward 1718+4807 indicates (D/H) = 2.0 +/- 0.5 x 10^{-4} which is in the high range. This and other independent observations suggests there may be a cosmological inhomogeneity in (D/H)_p of at least a factor of ten.Comment: 6 pages, 1 figur

    Non-BBN Constraints On The Key Cosmological Parameters

    Get PDF
    Since the baryon-to-photon ratio "eta" is in some doubt at present, we ignore the constraints on eta from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, Omega_M, eta) to four other observational constraints: Hubble parameter, age of the universe, cluster gas (baryon) fraction, and effective shape parameter "Gamma". We consider open and flat CDM models and flat "Lambda"-CDM models, testing goodness of fit and drawing confidence regions by the Delta-chi^2 method. CDM models with Omega_M = 1 (SCDM models) are accepted only because we allow a large error on h, permitting h < 0.5. Open CDM models are accepted only for Omega_M \gsim 0.4. Lambda-CDM models give similar results. In all of these models, large eta (\gsim 6) is favored strongly over small eta, supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial Gamma constraint are much lower values of Omega_M and eta permitted.Comment: 12 pages, Kluwer Latex, 2 Postscript figures, to appear in the proceedings of the ISSI Workshop, "The Primordial Nuclei and Their Galactic Evolution" (Bern, May 6-10, 1997), ed. N. Prantzos, M. Tosi, and R. von Steiger (Kluwer, Dordrecht

    Star formation history in the solar neighborhood: the link between stars and cosmology

    Full text link
    Using a cosmological galactic evolutionary approach to model the Milky Way, we calculate the star formation history (SFH) of the solar neighborhood. The good agreement we obtain with the observational inferences suggests that our physical model describes accurately the long term/large spatial trends of the local and global Milky Way SFH. In this model, star formation is triggered by disk gravitational instabilities and self-regulated by an energy balance in the ISM. The drivers of the SFH are the cosmological gas infall rate and the gas surface density determined by the primordial spin parameter. A LambdaCDM cosmology was used throughout.Comment: 8 pages, uses kluwer.cls. Invited talk, to appear in "New Quests in Stellar Astrophysics: The link between Stars and Cosmology", eds. M. Chavez, A. Bressan, A. Buzzoni & D. Mayya, Kluwer Academic Publisher

    The Galaxy Structure-Redshift Relationship

    Full text link
    There exists a gradual, but persistent, evolutionary effect in the galaxy population such that galaxy structure and morphology change with redshift. This galaxy structure-redshift relationship is such that an increasingly large fraction of all bright and massive galaxies at redshifts 2 < z < 3 are morphologically peculiar at wavelengths from rest-frame ultraviolet to rest-frame optical. There are however examples of morphologically selected spirals and ellipticals at all redshifts up to z ~ 3. At lower redshift, the bright galaxy population smoothly transforms into normal ellipticals and spirals. The rate of this transformation strongly depends on redshift, with the swiftest evolution occurring between 1 < z < 2. This review characterizes the galaxy structure-redshift relationship, discusses its various physical causes, and how these are revealing the mechanisms responsible for galaxy formation.Comment: 20 pages, 8 figures. Invited Review to appear in "Penetrating Bars Through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes A New Note", ed. D. Block et a

    Warps and waves in the stellar discs of the Auriga cosmological simulations

    Get PDF
    Recent studies have revealed an oscillating asymmetry in the vertical structure of the Milky Way's disc. Here, we analyse 16 high-resolution, fully cosmological simulations of the evolution of individual MilkyWay-sized galaxies, carried out with the magnetohydrodynamic code AREPO. At redshift zero, about 70 per cent of our galactic discs show strong vertical patterns, with amplitudes that can exceed 2 kpc. Half of these are typical 'integral sign' warps. The rest are oscillations similar to those observed in the Milky Way. Such structures are thus expected to be common. The associated mean vertical motions can be as large as 30 km s-1. Cold disc gas typically follows the vertical patterns seen in the stars. These perturbations have a variety of causes: close encounters with satellites, distant fly-bys of massive objects, accretion of misaligned cold gas from halo infall or from mergers. Tidally induced vertical patterns can be identified in both young and old stellar populations, whereas those originating from cold gas accretion are seen mainly in the younger populations. Galaxies with regular or at most weakly perturbed discs are usually, but not always, free from recent interactions with massive companions, although we have one case where an equilibrium compact disc reforms after a merger

    A fully cosmological model of a Monoceros-like ring

    Get PDF
    We study the vertical structure of a stellar disc obtained from a fully cosmological highresolution hydrodynamical simulation of the formation of a Milky Way-like galaxy. At the present day, the disc's mean vertical height shows a well defined and strong pattern, with amplitudes as large as 3 kpc in its outer regions. This pattern is the result of a satellite-host halo-disc interaction and reproduces, qualitatively, many of the observable properties of the Monoceros Ring. In particular we find disc material at the distance of Monoceros (R ~ 12-16 kpc, galactocentric) extending far above the mid plane (30°, 〈Z〉 ~ 1-2 kpc) in both hemispheres, as well as well-defined arcs of disc material at heliocentric distances ≤ 5 kpc. The pattern was first excited ≈3 Gyr ago as an m = 1 mode that later winds up into a leading spiral pattern. Interestingly, themain driver behind this perturbation is a low-mass low-velocity fly-by encounter. The satellite has total mass, pericentre distance and pericentric velocity of ~5 per cent of the host, ~80 kpc and 215 km s-1, respectively. The satellite is not massive enough to directly perturb the galactic disc but we show that the density field of the host dark matter halo responds to this interaction resulting in a strong amplification of the perturbative effects. This subsequently causes the onset and development of the Monoceros-like feature

    The effects of dynamical substructure on Milky Way mass estimates from the high-velocity tail of the local stellar halo

    Get PDF
    We investigate the impact of dynamical streams and substructure on estimates of the local escape speed and total mass of Milky-Way-mass galaxies from modelling the high-velocity tail of local halo stars. We use a suite of high-resolution magnetohydrodynamical cosmological zoom-in simulations that resolve phase space substructure in local volumes around solar-like positions. We show that phase space structure varies significantly between positions in individual galaxies and across the suite. Substructure populates the high-velocity tail unevenly and leads to discrepancies in the mass estimates. We show that a combination of streams, sample noise, and truncation of the high-velocity tail below the escape speed leads to a distribution of mass estimates with a median that falls below the true value by ∼20 per cent{\sim } 20 {{\ \rm per\ cent}}, and a spread of a factor of 2 across the suite. Correcting for these biases, we derive a revised value for the Milky Way mass presented in Deason et al. of 1.29−0.47+0.37×1012 M⊙1.29 ^{+0.37}_{-0.47} \times 10^{12}\, \rm M_{\odot }
    • …
    corecore